
Navigation and Ancillary Information Facility

N IF

Matlab Interface to CSPICE
“Mice”

How to Access the CSPICE library Using
Matlab©

November 2014

© The MathWorks Inc.

Navigation and Ancillary Information Facility

N IF

MATLAB Interface to CSPICE 2

Topics

•  Mice Benefits
•  How does it work?
•  Distribution
•  Mice Operation
•  Vectorization
•  Simple Mice Examples

Navigation and Ancillary Information Facility

N IF

MATLAB Interface to CSPICE 3

•  Mice operates as an extension to the Matlab environment.
•  All Mice calls are functions regardless of the call format of

the underlying CSPICE routine, returning Matlab native data
types.

•  Mice has some capability not available in CSPICE such as
vectorization.

•  CSPICE error messages return to Matlab in the form usable
by the try...catch construct.

Mice Benefits

Navigation and Ancillary Information Facility

N IF

MATLAB Interface to CSPICE 4

•  The Matlab environment includes an intrinsic capability to use
external routines.
–  Mice functions as a Matlab Executable, MEX, consisting of the

Mice MEX shared object library and a set of .m wrapper files.
»  The Mice library contains the Matlab callable C interface routines

that wrap a subset of CSPICE wrapper calls.
»  The wrapper files, named cspice_*.m and mice_*.m, provide the

Matlab calls to the interface functions.
»  A function prefixed with ‘cspice_’ retains essentially the same

argument list as the CSPICE counterpart.
»  An interface prefixed with ‘mice_’ returns a structure, with the

fields of the structure corresponding to the output arguments
of the CSPICE counterpart.

»  The wrappers include a header section describing the function call,
displayable by the Matlab help command.

How Does It Work? (1)

Navigation and Ancillary Information Facility

N IF

MATLAB Interface to CSPICE 5

When a user invokes a call to a Mice function:

 1. Matlab calls…
 2. the function's wrapper, which calls…
 3. the Mice MEX shared object library, which

performs its function then returns the result…
 4. to the wrapper, which…

5. returns the result to the user

… transparent from the user’s perspective.

How Does It Work? (2)

Navigation and Ancillary Information Facility

N IF

MATLAB Interface to CSPICE 6

Mice Distribution

•  NAIF distributes Mice as a complete, standalone package.
•  The package includes:

–  the CSPICE source files
–  the Mice interface source code
–  platform specific build scripts for Mice and CSPICE
–  Matlab versions of the SPICE cookbook programs, states, tictoc,

subpt, and simple
–  an HTML based help system for both Mice and CSPICE, with the

Mice help cross-linked to CSPICE
–  the Mice MEX shared library and the M wrapper files. The system

is ready for use after installation of the the library and wrapper
files.

•  Note: You do not need a C compiler to use Mice.

Navigation and Ancillary Information Facility

N IF

MATLAB Interface to CSPICE 7

Mice Operation (1)

•  A possible irritant exists in loading kernels using the
cspice_furnsh function.

–  Kernels load into your Matlab session, not into your Matlab
scripts. This means:

»  loaded binary kernels remain accessible (“active”) throughout your
Matlab session

»  data from loaded text kernels remain in the kernel pool (in the memory
space used by CSPICE) throughout your Matlab session

–  Consequence: some kernel data may be available to one of your
scripts even though not intended to be so.

»  You could get incorrect results!
»  If you run only one script during your Matlab session, there’s no

problem.

continued on next page

Navigation and Ancillary Information Facility

N IF

MATLAB Interface to CSPICE 8

Mice Operation (2)

•  Mitigation: two approaches
–  Load all needed SPICE kernels for your Matlab session at the

beginning of the session, paying careful attention to the files
loaded and the loading order (loading order affects precedence)

»  Convince yourself that this approach will provide ALL of the scripts
you will run during this Matlab session with the appropriate SPICE
data

–  At or near the end of every Matlab script:
»  include a call to cspice_unload for each kernel loaded using
cspice_furnsh

»  or include a call to cspice_kclear to remove ALL kernel data from
the kernel pool loaded using cspice_furnsh

Navigation and Ancillary Information Facility

N IF

MATLAB Interface to CSPICE 9

•  Most Mice functions include use of vectorized arguments, a
capability not available in C or Fortran toolkits.

•  Example: use Mice to retrieve state vectors and light-time
values for 1000 ephemeris times.

–  Create the array of 1000 ephemeris times in steps of 10 hours,
starting from July 1, 2005:

start = cspice_str2et('July 1 2005');

et = (0:999)*36000 + start;!

–  Retrieve the state vectors and corresponding light times from
Mars to earth at each et in the J2000 frame with LT+S aberration
correction:

!
[state, ltime] = cspice_spkezr('Earth', et, 'J2000', 'LT+S', 'MARS');

 or
starg = mice_spkezr('Earth', et, 'J2000', 'LT+S', 'MARS');

Mice Vectorization (1)

continued on next page

Navigation and Ancillary Information Facility

N IF

MATLAB Interface to CSPICE 10

–  Access the ith state 6-vector (6x1 array) corresponding to the ith
ephemeris time with the expression

 state_i = state(:,i)

 or
 state_i = starg(i).state

•  Convert the ephemeris time vector et from the previous

example to UTC calendar strings with three decimal places of
precision in the seconds field.
!

 format = 'C';

 prec = 3;

 utcstr = cspice_et2utc(et, format, prec);
!

–  The call returns utcstr, an array of 1000 strings (dimensioned
1000x24), where each ith string is the calendar date corresponding
to et(i).

Mice Vectorization (2)

continued on next page

Navigation and Ancillary Information Facility

N IF

MATLAB Interface to CSPICE 11

–  Access the ith string of utcstr corresponding to the ith ephemeris
time with the expression

 utcstr_i = utcstr(i,:)

•  Convert the position components (the first three components
in a state vector) of the N state vectors returned in state by
the cspice_spkezr function to latitudinal coordinates.

 [radius, latitude, longitude] = cspice_reclat(state(1:3,:));

!
–  The call returns three double precision 1x1000 arrays (vectorized

scalars): radius, latitude, longitude.

Mice Vectorization (3)

Navigation and Ancillary Information Facility

N IF

MATLAB Interface to CSPICE 12

Simple Mice Example (1)

•  As an example of using Mice, calculate and plot the trajectory
of the Cassini spacecraft, in the J2000 inertial frame, from
June 20 2004 to December 1 2005. This example uses the
cspice_spkpos function to retrieve position data.

% Define the number of divisions of the time interval.
STEP = 1000;

% Construct a meta kernel, "standard.tm”, which will be used to load the needed
% generic kernels: "naif0009.tls," "de421.bsp,” and "pck00009.tpc.”

% Load the generic kernels using the meta kernel, and a Cassini spk.

cspice_furnsh({ 'standard.tm', '/kernels/cassini/spk/030201AP_SK_SM546_T45.bsp'})

et = cspice_str2et({'Jun 20, 2004', 'Dec 1, 2005'});
times = (0:STEP-1) * (et(2) - et(1))/STEP + et(1);

[pos,ltime]= cspice_spkpos('Cassini', times, 'J2000', 'NONE', 'SATURN BARYCENTER');

% Plot the resulting trajectory.
x = pos(1,:);
y = pos(2,:);
z = pos(3,:);

plot3(x,y,z)

cspice_kclear

continued on next page

Navigation and Ancillary Information Facility

N IF

MATLAB Interface to CSPICE 13

Simple Mice Example (2)

•  Repeat the example of the previous page, except use the
mice_spkezr function to retrieve full state vectors.

% Define the number of divisions of the time interval.
STEP = 1000;

% Construct a meta kernel, "standard.tm”, which will be used to load the needed
% generic kernels: "naif0009.tls," "de421.bsp,” and "pck00009.tpc.”

% Load the generic kernels using the meta kernel, and a Cassini spk.

cspice_furnsh({ 'standard.tm', '/kernels/cassini/spk/030201AP_SK_SM546_T45.bsp'})

et = cspice_str2et({'Jun 20, 2004', 'Dec 1, 2005'});
times = (0:STEP-1) * (et(2) - et(1))/STEP + et(1);

ptarg = mice_spkpos('Cassini', times, 'J2000', 'NONE', 'SATURN BARYCENTER');
pos = [ptarg.pos];

% Plot the resulting trajectory.
x = pos(1,:);
y = pos(2,:);
z = pos(3,:);

plot3(x,y,z)

cspice_kclear

continued on next page

Navigation and Ancillary Information Facility

N IF

MATLAB Interface to CSPICE 14

Mice Example Graphic Output

Trajectory of the Cassini spacecraft, in the J2000 frame, from June 20 2004 to Dec 1 2005

